Matroids I

Definition: Let E be a finite set and $\mathcal{F} \subseteq 2^E$. A set system (E, \mathcal{F}) is called a **matroid** if it satisfies

- (M1) $\emptyset \in \mathcal{F}$;
- (M2) If $X \subseteq Y \in \mathcal{F}$ then $X \in \mathcal{F}$;
- (M3) If $X, Y \in \mathcal{F}$ and |X| > |Y|, then there is $x \in X \setminus Y$ with $Y \cup \{x\} \in \mathcal{F}$.

Elements in \mathcal{F} are called **independent sets**.

1: Let E be any finite set and $k \ge 0$. Let $\mathcal{F} = \{F \subseteq E : |F| \le k\}$. Show that (E, \mathcal{F}) is a matroid. (It is called **uniform matroid**.)

Solution: All three axioms are clearly satisfied.

2: Let E be the set of columns of a matrix A over some field. Let $\mathcal{F} = \{F \subseteq E : \text{ the columns in } F \text{ are linearly independent}\}$. Show that (E, \mathcal{F}) is a matroid. (It is called **linear** or **vector matroid**.)

Solution: (M1) and (M2) are clearly satisfied. (M3) is well known from linear algebra.

3: Let E be the set of edges of an undirected graph G. Let $\mathcal{F} = \{F \subseteq E : (V(G), F) \text{ is a forest}\}$. Show that (E, \mathcal{F}) is a matroid. (It is called **graphic** or **cycle matroid**.)

Solution: (M1) and (M2) are clearly satisfied. For (M3), consider what is the number of connected components in X and Y. Since the one for Y is smaller, there must be and edge in X connecting two components in Y.

Maximal independent sets in \mathcal{F} are called **bases** (see linear matroid).

Minimal dependent sets (means not independent) in \mathcal{F} are called **circuits** or **cycles** (see graphic matroid).

Motivation for Matroids

Let (E, \mathcal{F}) be a matroid. Let $c: E \to \mathbb{R}_+$. Find $X \in \mathcal{F}$ such that $\sum_{e \in X} c(e)$ is maximized.

Notice that this would be the same as maximum cost spanning tree for graphic matroid.

 (E,\mathcal{F}) being a matroid \Rightarrow greedy algorithm works

- 1. Sort E such that $c(e_1) \geq c(e_2) \geq \cdots \geq c(e_m)$
- 2. Let $F = \emptyset$
- 3. for i in 1 to m
- 4. if $\{e_i\} \cup F \in \mathcal{F}$ then $F := F \cup \{e_i\}$.

4: Show that the greedy algorithm is correct. (Hint: similar to Kruskal's algorithm - consider optimal F^* and investigate the difference of F and F^* .)

Solution: Let F be a_1, a_2, \ldots, a_m and F^* be b_1, b_2, \ldots, b_n . Assume $c(a_1) \ge c(a_2) \ge \cdots$ and $c(b_1) \ge c(b_2) \ge \cdots$. Let k be the smallest such that $c(a_k) < c(b_k)$ (if there is

no such k, F is also optimal). Consider $A = \{a_1, \ldots, a_{k-1}\}$ and $B = \{b_1, \ldots, b_k\}$. Application of (M3) on A and B gives $b \in B$ such that $A \cup \{b\}$ is independent, this contradicts the choice of a_k in the greedy algorithm instead of choosing b.

5: Let (E, \mathcal{F}) satisfy (M1) and (M2). Suppose that the greedy algorithm works for all $c: E \to \mathbb{R}_+$. Show that (E, \mathcal{F}) is a matroid.

Solution: Let $X, Y \in \mathcal{F}$ and |X| > |Y|. Assign cost

$$c(e) = \begin{cases} 1 + \varepsilon & \text{if } e \in Y \\ 1 & \text{if } e \in X \setminus Y \\ 0 & \text{otherwise} \end{cases}$$

Where $0 < \varepsilon < |Y|$. The greedy algorithm picks all elements from Y. But X is independent and c(X) > c(Y). Since the greedy algorithm works, it must also pick some $x \in X \setminus Y$.

6: Show that all bases of a matroid have the same cardinality.

Solution: \Rightarrow If bases B_1 and B_2 have different cardinality, then (M3) gives contradiction with maximality of the smaller one.

Theorem 13.9 Let E be a finite set and $\mathcal{B} \subseteq 2^E$. \mathcal{B} is the set of bases of some matroid iff \mathcal{B} satisfies

(B1) $\mathcal{B} \neq \emptyset$;

(B2) For any $B_1, B_2 \in \mathcal{B}$ and any $x \in B_1 \setminus B_2$ there exists $y \in B_2$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

7: Show that matroids satisfy (B1) and (B2).

Solution: Easy consequence of (M2) and (M3).

8: Show that if \mathcal{B} satisfies (B1) and (B2), then all bases in \mathcal{B} have the same cardinality.

Solution: Let $|B_1| > |B_2|$ and $|B_1 \cap B_2|$ is maximized. Use of (B2) gives a contradiction with maximality of $|B_1 \cap B_2|$.

9: For \mathcal{B} satisfying (B1) and (B2) find a matroid (E,\mathcal{F}) .

Solution: Let

$$\mathcal{F} = \{ F \subseteq E : F \subseteq B \text{ for some } B \in \mathcal{B} \}.$$

By (B1), (M1) and (M2) are satisfied. Verify (M3). Let $X, Y \in F$ with |X| > |Y|. If $Y \subseteq X$, then any element of X will do. Otherwise suppose $X \in B_1$ and $Y \in B_2$, where $|B_1 \cap B_2|$ is maximized. If $B_2 \cap (X \setminus Y) \neq \emptyset$, then Y is easy to extend. Assume $B_2 \cap (X \setminus Y) = \emptyset$. Then

$$|B_1 \cap B_2| + |Y \setminus B_1| + |(B_2 \setminus B_1) \setminus Y| = |B_2| = |B_1| \ge |B_1 \cap B_2| + |X \setminus Y|$$

Observe $|X \setminus Y| > |Y \setminus X| \ge |Y \setminus B_1|$. Hence $(B_2 \setminus B_1) \setminus Y \ne \emptyset$. Pick $x \in (B_2 \setminus B_1) \setminus Y$ and use (B2) to get a contradiction with $|B_1 \cap B_2|$ being maximized.